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Abstract

The method for calculating stress—strain state and fracture proposed by Kolmogorov (1995) and in Part
1 of this present paper is illustrated by the simple problem of a thin bar impacting a rigid obstacle. Known
exact solutions are used to test the method. On the basis of the stability theory, the one-dimensional solution
has been shown to be legitimate. Mathematical simulation of bar fragmentation resulting from impact has
been carried out. © 1998 Elsevier Science Ltd. All rights reserved.

1. Calculation of stress—strain state on elastic bar impact

Suppose a thin bar of length L moves at a rate vy and at t = ¢, = 0 begins to interact with a
rigid obstacle (Fig. 1). The stress and strain states for # > ¢, need to be defined. The bar is assumed
to be incompressible and isotropic. Besides, the mass forces (excepting inertial) are assumed to be
negligible, and the constitutive equations (physical coupling equations) for deviators are rep-
resented by some functionals. In the subsequent discussion, the Lagrangian variables x, 0 < x < L
will be used. As a Lagrangian coordinate we take the coordinates of the particles at the instant
t = t,, and in the problem discussed in this section they will coincide with Eulerian ones, as the
deformations are small.

In our problem, the variational equation for the principle of virtual velocities and stresses (see
e.g. Kolmogorov, 1995; Kolmogorov, 1986) at an arbitrary fixed instant of time has the form

ol=9 {JL(GUfZ,-—prfv;) dx} = 0. (1

0
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Here I is the functional of the principle: ¢,;, &;; are stress tensor and strain rate tensor components;
v,, w; are velocity and acceleration components; p is density. Repeated indices indicate summation
for possible values x, y, z. Varying quantities are marked with a prime sign.

Let the constitutive relations be represented by the Hooke law, which, on account of the
incompressibility of the material acquires the form of the functional

0

where G is modulus of shear, G = E/3, E is Young’s modulus.

1.1. Solution by the variational-difference method

Solve the variational problem (1) by the difference model. Choose the one-dimensional virtual
fields of velocities and stresses as:

Ui—U;_ ,
:#(x_xi—l)—f_vi—la Xio1 SXS X (3)

x =0 =Tlil(x_xi71)+0';71, Xi1 SX<X, 4)
the rest of velocity and stress components being equal to zero. Here: x, = 0, x,,...,x, = L are the
coordinates of even segmentation points within [0, L]; A = L/n; v; = v,(¢t) and ¢; = o,(¢) are the
unknown values of velocity and stress in the segmentation nodes. The equation of equilibrium
0a’/0x = pw is satisfied by entering it in the functional (1) with the Lagrange multiplier v, which
is also represented by the piecewise linear function

o

Vi—Vi_
V/ZITII(X—X,'A)‘FVL]; Xio1 S XS X ©)

Taking into account that

Fig. 1. Impact of a bar against a rigid obstacle.
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5;,‘( =% , X <X < Xis (6)

the functional of principle (1) has the form of the function of the variables v, ¢}, v/, i =0, ..., n:

7 iJ’Y’ |: Ui =iy n <U;—U;—1( - )
= Oy ——— +pw | ——(x—x,_ vi_
= » A A 1 1

Vi—Vi_ , g, —0;_
+<A](x—x,-1)+v,-l><Al—pw>}dx. (7

According to the method from Kolmogorov (1995) and Part 1 of the present paper, by sub-
stituting (after differentiation) the relations
_ dPy/dr? —dzui,l/dtzf

v; = du;/dt, w= A (x—x;_y)+d%u,_,/d¢? (8)

and the value

3 (u;—u;_y)
Gxx = Esxx = 3GT15 xifl < X < xia (9)

corresponding to the constitutive relations (2), into the necessary extremum conditions of function
(7)
oljov; =0, 0llda;, =0, 0dljov,=0. (10)

we obtain the sets of differential equations for finding the values of u,(¢) = [(v,(r) dt—displacements
of the nodes relative to the initial position and g(¢):

Ad?u/dt® = Bu, (11)
Do = Fd*u/dr?, (12)
where u = (up, uy,...,u,)", o =(0y,0,,...,0,)" are vector-functions of time; A, B, D, F are the

constant matrices.

As an example, the set (11) has been solved numerically (by the third-order Runge—Kutta
method) with the initial conditions: u,(¢,)) =0, i =0,...,n; v(t) =du/dt =vs, i=1,...,n, v,
(t,) = 0, for n = 10, with the following values of the parameters: p = 8000 kg/m’; L = 0.1 m;
E = 200,000 MPa. The values of displacements and stresses in the nodes as functions of time have
been found, as well as the time of bar rebound ¢, = 0.00004 s [from the condition oy(zs) = 0]
required for a new boundary value problem statement: bar motion after the rebound if fracture
does not occur. The problem of the post-rebound motion was solved similarly. Note that the
following boundary conditions are taken into account in solving: u#, = v, = ¢, = 0 in the stage of
bar—obstacle interaction, and ¢, = o, = 0 after the rebound. As initial conditions for the second
stage, the values of node stresses, displacements and velocities obtained at the instant of rebound
are taken. The displacements and velocities for n = 10 agree well with the exact solutions to the
wave equation describing the longitudinal vibrations of an elastic bar, while stresses require finer
segmentation or a different approximation.
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1.2. Solution with Fourier series

Now we solve the same variational problem (1) by using another interpolation of unknown
functions, namely, find displacement velocities v(z, x), stresses a(¢, x) and the Lagrangian multiplier
v(t, x) for the equation of equilibrium as segments of the trigonometric Fourier series with known
coordinate functions satisfying the boundary conditions v'(z,0) = ¢’(z, L) = 0 and the unknown
coefficients (1), b(t), c(t). For the stage of interaction, the virtual fields have the form:

n

v'(t,x) = Z a,(t) sin(o;x), (13)
o' (t,x) = 2 b,(t) cos(a;x), (14)
v(t,x) = i ¢; (1) sin(o;x), (15)

i=1

where o; = n(i—0.5)/L.

By using the method proposed by Kolmogorov (1995), as was done in Section 1.1, to find the
unknown coefficients, we obtain the uniform set of linear ordinary differential second-order
equations:

_ddd&d 3G, pdid 16
ai_dl’ d[z_ o di, i—_aidtza (16)
the solution result being
u(t,x) = Y Ay sin(aoy1) sin(oyx), (17)
k=1
where a = /3G/p and the coefficients A4, are found from the initial conditions
u(0,x) =f(x), 0<x<L (18)
as follows
L
Ay =Q2a/Loy,) J f(x) sin(oy.x) dx. (19)
0

As the function f(x), we can choose the continuous function approximating the discontinuous
initial conditions of the impact problem:

u,0,0) =0, u,0,x)=0vs, 0<x<L. (20)

The solution (17) coincides with the sum of the first » members of the series presenting the exact
solution for the wave equation.

Similarly, the problem is solved for bar motion after rebound. The virtual fields satisfying the
boundary conditions ¢’(z,0) = ¢’(¢, L) = 0 were taken as follows
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n

v'(t,x) = Z a;(t) cos(f.x), (21)
a'(t,x) = i b;(¥) sin(f,x), (22)
v(t,x) = z”: ¢;(t) cos(f:x), (23)

i=0

where f§; = wi/L. As the initial conditions for the second stage, the values of displacement, velocity
and stress by the instant of rebound are taken. Figure 2 shows the value stresses in the nodes
calculated by means of the series for v4 = 250 m/s, n = 20.

The solution in the form of series segments gives a more exact result than the variational-
difference one (particularly, with respect to stresses), however it is not always possible to select
coordinate functions.

Problem solutions in Sections 1.1 and 1.2 are necessary for testing the method and they are
based on the assumption that the bar does not fracture (there is no macrofragmentation). Now
we turn to the prediction of microdamage and macrofragmentation according to Kolmogorov
(1995) and Part 1 of the paper.
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Fig. 2. Solution with the Fourier series. Stress.
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1.3. The calculation of bar damage

According to Kolmogorov (1995) and Part 1 of the paper, for the problem solutions obtained,
we have calculated damage caused by vibrations (due to fatigue) in the course of bar motion in
order to define the times, ¢, and coordinates x of microfractures.

Damage, , is predicted for a material particle as follows. Sections of monotonic deformation
are singled out on the motion path. Within the section, the strain rate ¢, does not change its sign.
We indicate by ¢, t,, ..., t,_;—the instants of &, sign change. On the n-th section ¢, , <t < t,

Vo) = 3 W

dy,  HQ
dr Ak (1), k> (D]

Here H = H(¢) is shear strain rate intensity, k, = o/T, k, = 2(0,,—033)/(0,,—033) — 1, ¢ is mean
normal stress, 7 is tangential stresses intensity, ¢, = 0, = 53 are principal normal stresses,
A, = A,(k,, k,) 1s plasticity, o, = o;(k,,k,) are the values of the function o = a(k,, k,) in the i-th
region of monotonic deformation. By the instant of fracture (1 = 1,) ¥(¢) = Y(z,) = 1.

The functions A, and « are taken from Bogatov et al. (1984):

A, = yexp(4o/T), o= ayexp(140.2380/T) (25)

with the following material constants: y = 0.2, 1 = —2, o, = 1.2. For simplicity, damage is cal-
culated for the finite number of points y, = iL/0.01, i = 1,...,100. The simplification error does
not exceed the solution error. In the models under study, the value of damage reaches one in
several points at a time, to be more exact, on some segments where macrofracture will occur.
Figure 3 shows damage distribution in the bar at the instant when the first macrorupture occurs
t, =0.000043 s at the impact velocity of 250 m/s. It should be noted that, in all the model
experiments, the distribution of damage, y/, along the bar was seen to be an oscillating function.

Yu(t,-1) = 0. (24)
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Fig. 3. Damage throughout the length of elastic bar.
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Fig. 4. The instant of the first fracture.

Figures 4 and 5 show the time of fracture, 7,, and the rupture point coordinates x, as dependent
on impact velocity, v,. Similarly, the subsequent times and points of rupture can be predicted.
Figure 6 shows the motion of bar fragments after the first rupture.

Post-impact solid fragmentation caused by material fatigue in vibration is known from exper-
iments. For example, this mechanism may be responsible for the failure of Rupert’s glass drops
(see Johnson and Chandrasekar, 1992).
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Fig. 5. The point of the first fracture.
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Fig. 6. Fracture point displacement.

The authors are aware of the fact that the method proposed in Part 1 of the paper and
Kolmogorov (1995) and illustrated here should be supplemented with the description of dissipation
of mechanical energy into heat energy and the description of vibration damping due to internal
friction and external resistance.

2. Plastic bar impact on a rigid obstacle

Consider plastic bar impact when the bar takes only residual, namely, large strains. The material
is assumed to be incompressible, the constitutive relation having the form:

T=Q<J’Hdt>a, 0<a<l. (26)

)

Here we deal with large strains and the history of the Lagrangian coordinate system needs to be
taken into account. For the chosen type of strain (3), the nonzero components of the metric tensor
are as follows

1 1
g,\‘x = " = 9
g I+ @w—u_)/A)?
9y =9"=9..=9° =1, xel0,L]. (27)

They do not depend on x, therefore all the Cristoffel symbols are equal to zero, whereas the
covariant derivative used in the equilibrium equations and kinematic equations, as in Part 1 of the
paper, is equal to the corresponding partial derivative:
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V, = 0/ox. (28)

In this case the functional of the virtual velocities and stresses principle can be written as follows

1= JL(TH/ + pwr’) dx. (29)

0

Note that v” is a covariant velocity component, w is a contravariant acceleration component
expressed via the metric tensor as follows

\,dU (u,«—ui, ) 2d1)
w=gx'dt=<1+A 1)d;' (30)

We choose the virtual fields in the difference form (3)—(5). Taking into account that

v;_; >v; and H’:ﬁ%:ﬁ$’

the functional takes the form of the function

O lv; —vi_y| v;— Ui ,
I=ZJ [T\/gAl—l—pw A x—x 1)+

i=1Jx

By substituting eqn (30) and the relation
' . x 3(u,—u;) \*
T- Q(J ﬂ”"‘A”’dt) - Q(W) xelx 1, (32)
0

into the necessary extremum conditions (10), we obtain a set of equations consisting of eqn (12)
and

L(u) 0*u/ot®* = K(u) (33)

to find the functions u,(¢) and o,(¢). Here L(u), K(u) are nonlinear vector functions of the vector
argument; u, ¢, D, F are the same as Section 1.1.

Set (33) has been solved numerically (by the third-order Runge—Kutta method) with the initial
conditions and parameter values from Section 1.1, except vy = 300 m/s, O = 2000 and « = 0.5.
The calculation results are shown in Fig. 7.

Bar damage was calculated for the obtained solution. Table 1 shows the values of Y in each of
the 10 segments [x,_;, x,], with the impact velocity of 300 m/s, ¢, = 0.000015 s. The first fracture
occurs in the first element.
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Fig. 7. The strain of the plastic bar before fracture: [], £ = 0.00001; |, ¢ = 0.00002; e, r = 0.000033.

Table 1
Damage along the elastoplastic bar

Element No. 1 2 3 4 5 6 7 8 9 10

Damage, y 1.002 0.878 0.623 0.199 0.059 0.020 0.009 0.004 0.004 0.007

3. Stability of the rectilinear shape of the elastic bar impacting a rigid obstacle

The method proposed in Part 1 and Komogorov (1995) offers approximate solution for the
problem of motion stability of systems with distributed parameters. One example is discussed
below.

In the above, one-dimensional solutions for the problem of thin bar impact on a rigid obstacle
was obtained. However, common sense and experience are suggestive of the fact that the bar may
have lateral displacements as well. Therefore the assumption of the above-described deformation
type may prove unrealizable in practice or realizable under certain conditions. The stability of
lateral displacements of bar points in impact is discussed here. Particularly, the rate of growth of
lateral displacements is estimated: if it is low under some conditions, then the solutions given in
Sections 1 and 2 can be considered realizable in practice under these conditions.

Applying the above-mentioned variational principle, we obtain the known equations of plane
lateral-longitudinal vibrations of an elastic bar (see e.g. Berezovsky, 1976). The boundary con-
ditions are as follows. At the tangency point, the bar end displacements and the bending moment
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are zero. At the free end, the lateral force, bending moment and longitudinal force are zero. Note
that these boundary conditions allow for the displacement of the bar as a unit (rotation about the
tangency point) and are called irregular. In the literature, as a rule, cases of regular fixation are
discussed.

Since the problem under study is that of stability, the bar deflection from the long axis (abscissa)
and the angle of rotation (derivative of deflection with respect to the abscissa) are considered
small. After the linearization, the equation of longitudinal vibrations becomes independent of the
equation of lateral vibrations and it is integrated independently. The solution is well-known and
it is constructed in the form of a trigonometric series. As a result, after substituting this solution
into the equation of lateral vibrations we obtain a parabolic equation with periodic coefficients.

The solution for this equation is pursued in the form of the series:

u(t,8) = Y. @u(Qw,(2). (34)
m=0
Here ¢,,(x) are eigenfunctions of the boundary value problem

d*e
— + fn m = 09 35
gz T (35)
@’ d’ &g,

Pl =0, S0 20, gum=0, “ 2 =0 (36)
d&® oo d&® oo dé” |-y

having the form

@n(&) = sh(q,,(¢—1))/ch(g,,) +sin(g,,(E—1))/cos(g,), m=1,2,3.

@o(&) = £—1. The numbers ¢, satisfy the transcendental equation t¢(g,,) = th(q,,). This equation
has a countable number of roots, including the double zero root corresponding to the rotation of
the bar as a solid about the point of contact with the obstacle. One eigenfunction corresponds to
this root. The roots asymptotically approach the numbers of the form n/4+7n, n — 0.

Substitution and rearrangement give a countable set of ordinary differential equations with
periodic coefficients with respect to the functions w,,(7):

2 0 0

dw, +awpw,—40* Y > (—1)sin <n(2k2+1)T>bnmkwm =0, n=0,1,2,... (37)

2
T k=0m=0

(n(2k—|— 1)z
Y

S1
, [ n(2%k+1)z\ dg,(2) 2 >d2<pm(z)
bnmk ” (pn(z) || = J\ (pn(z) |:COS < 2 ) dZ + ﬂ(2k+ 1) dzz :|dZ (38)

0

Here, v* = Vy/a is a relative impact velocity to be considered a minor parameter.
Let us estimate the parameters of the set (37)—(38) for two cases (see e.g. Bogolubov and
Mitropolsky, 1970; Mitropolsky, 1967; Berezovsky, 1976).
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1. Simple resonance. Assume, at some i and j, the relation
o, =i+ 1)24pd; @ = 4dv*, (39)

is fulfilled, i.e., one of the frequencies of the longitudinal vibration is close to the frequency of the
longitudinal vibrations. Hence the relation between the resonance frequencies and the relative bar
rigidity, ¢, can be found:

£ (40)

2q; S
T

Qi+ 1 -

The parameter 3 defines the difference between these frequencies. It is supposed to be proportional
to the minor parameter. It is also supposed that this relation is not fulfilled at any other i and ;.
Figure 8 shows the boundary of the stability region as dependent on the parameter m at i = 0,
j = 3. The lateral vibration frequency dependent on the relative rigidity ¢ is plotted on the horizontal
axis, the parameter m proportional to the square root of impact velocity is plotted on the vertical
axis. The resonance frequency is marked by a thin vertical line. The regions where the real parts

[Y39S 2]

of the roots of the characteristic equation are positive are denoted by “#»’’, whereas the regions
with the zero parts are denoted by ““s”. Note that, because of calculation errors, the real parts of
the eigenvalues may be positive, though very small (about the values of calculation errors).

2. Combinative resonance. Assume, at some 7, j and m, the relation

w+0;+e3+9,) =n2m+1)/2 (41)

08 |~

0.4

0.2

0 I
1.35 14 1.45 1.5 1.55 1.6 ®

Fig. 8. Domains of stability for elastic bar rectilinearity.
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is fulfilled. Also assumed that, for the rest of the frequency pairs, these relations are not fulfilled
at any i, j, m, and at any i and m we have w; # p(2m+1)/2.

Thus, the solutions given in Sections 1 and 2 are realizable in practice, as they are stable with
respect to lateral vibrations at certain values of the parameters.

4. Conclusion

The examples discussed in the paper have shown good results in applying the method for solving
boundary value problems of deformed solid mechanics described in Part 1 and Komogorov (1995).
The method can be applied to the prediction of the strain—stress state and body fragmentation
under macrofracture as well as to the study of motion stability described in Part 1 and Kolmogorov
(1995). The solutions obtained by the method coincide with the well-known solutions and explain
some experimental phenomena. The method can be recommended for practical application.
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