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Abstract

The method for calculating stressÐstrain state and fracture proposed by Kolmogorov "0884# and in Part
0 of this present paper is illustrated by the simple problem of a thin bar impacting a rigid obstacle[ Known
exact solutions are used to test the method[ On the basis of the stability theory\ the one!dimensional solution
has been shown to be legitimate[ Mathematical simulation of bar fragmentation resulting from impact has
been carried out[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Calculation of stressÐstrain state on elastic bar impact

Suppose a thin bar of length L moves at a rate v� and at t � t9 � 9 begins to interact with a
rigid obstacle "Fig[ 0#[ The stress and strain states for t × t9 need to be de_ned[ The bar is assumed
to be incompressible and isotropic[ Besides\ the mass forces "excepting inertial# are assumed to be
negligible\ and the constitutive equations "physical coupling equations# for deviators are rep!
resented by some functionals[ In the subsequent discussion\ the Lagrangian variables x\ 9 ¾ x ¾ L
will be used[ As a Lagrangian coordinate we take the coordinates of the particles at the instant
t � t9\ and in the problem discussed in this section they will coincide with Eulerian ones\ as the
deformations are small[

In our problem\ the variational equation for the principle of virtual velocities and stresses "see
e[g[ Kolmogorov\ 0884^ Kolmogorov\ 0875# at an arbitrary _xed instant of time has the form

dI � d 6g
L

9

"sijj?ij¦rwiv?i# dx7� 9[ "0#

� Corresponding author[
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Here I is the functional of the principle] sij\ jij are stress tensor and strain rate tensor components^
vi\ wi are velocity and acceleration components^ r is density[ Repeated indices indicate summation
for possible values x\ y\ z[ Varying quantities are marked with a prime sign[

Let the constitutive relations be represented by the Hooke law\ which\ on account of the
incompressibility of the material acquires the form of the functional

sij � 1G g
t

9

jij dt\ "1#

where G is modulus of shear\ G � E:2\ E is Young|s modulus[

0[0[ Solution by the variational!difference method

Solve the variational problem "0# by the di}erence model[ Choose the one!dimensional virtual
_elds of velocities and stresses as]

v?x � v? �
v?i−v?i−0

D
"x−xi−0#¦v?i−0\ xi−0 ¾ x ¾ xi^ "2#

s?xx � s? �
s?i−s?i−0

D
"x−xi−0#¦s?i−0\ xi−0 ¾ x ¾ xi\ "3#

the rest of velocity and stress components being equal to zero[ Here] x9 � 9\ x0\ [ [ [ \ xn � L are the
coordinates of even segmentation points within ð9\LŁ^ D � L:n^ v?i � vi"t# and s?i � si"t# are the
unknown values of velocity and stress in the segmentation nodes[ The equation of equilibrium
1s?:1x � rw is satis_ed by entering it in the functional "0# with the Lagrange multiplier n\ which
is also represented by the piecewise linear function

n? �
n?i−n?i−0

D
"x−xi−0#¦n?i−0\ xi−0 ¾ x ¾ xi[ "4#

Taking into account that

Fig[ 0[ Impact of a bar against a rigid obstacle[
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j?xx �
v?i−v?i−0

D
\ xi−0 ¾ x ¾ xi\ "5#

the functional of principle "0# has the form of the function of the variables v?i\ s?i\ n?i\ i � 9\ [ [ [ \ n]

I � s
n

i�0 g
xi

xi−0
$sxx

v?i−v?i−0

D
¦rw 0

v?i−v?i−0

D
"x−xi−0#¦v?i−01

¦0
n?i−n?i−0

D
"x−xi−0#¦n?i−01 0

s?i−s?i−0

D
−rw1% dx[ "6#

According to the method from Kolmogorov "0884# and Part 0 of the present paper\ by sub!
stituting "after di}erentiation# the relations

vi � dui:dt\ w �
d1ui:dt1−d1ui−0:dt1

D
"x−xi−0#¦d1ui−0:dt1 "7#

and the value

sxx �
2
1

sxx � 2G
"ui−ui−0#

D
\ xi−0 ¾ x ¾ xi\ "8#

corresponding to the constitutive relations "1#\ into the necessary extremum conditions of function
"6#

1I:1v?i � 9\ 1I:1s?i � 9\ 1I:1n?i � 9[ "09#

we obtain the sets of di}erential equations for _nding the values of ui"t# � Ðt
9vi"t# dt*displacements

of the nodes relative to the initial position and si"t#]

A d1u:dt1 � Bu\ "00#

Ds � F d1u:dt1\ "01#

where u �"u9\ u0\ [ [ [ \ un#T\ s �"s9\ s0\ [ [ [ \ sn#T are vector!functions of time^ A\ B\ D\ F are the
constant matrices[

As an example\ the set "00# has been solved numerically "by the third!order RungeÐKutta
method# with the initial conditions] ui"t9# � 9\ i � 9\ [ [ [ \ n^ vi"t9# � dui:dt � v�\ i � 0\ [ [ [ \ n\ v9

"t9# � 9\ for n � 09\ with the following values of the parameters] r � 7999 kg:m2^ L � 9[0 m^
E � 199\999 MPa[ The values of displacements and stresses in the nodes as functions of time have
been found\ as well as the time of bar rebound t� � 9[99993 s ðfrom the condition s9"t�# � 9Ł
required for a new boundary value problem statement] bar motion after the rebound if fracture
does not occur[ The problem of the post!rebound motion was solved similarly[ Note that the
following boundary conditions are taken into account in solving] u9 � n9 � sn � 9 in the stage of
barÐobstacle interaction\ and s9 � sn � 9 after the rebound[ As initial conditions for the second
stage\ the values of node stresses\ displacements and velocities obtained at the instant of rebound
are taken[ The displacements and velocities for n � 09 agree well with the exact solutions to the
wave equation describing the longitudinal vibrations of an elastic bar\ while stresses require _ner
segmentation or a di}erent approximation[
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0[1[ Solution with Fourier series

Now we solve the same variational problem "0# by using another interpolation of unknown
functions\ namely\ _nd displacement velocities v"t\ x#\ stresses s"t\ x# and the Lagrangian multiplier
n"t\ x# for the equation of equilibrium as segments of the trigonometric Fourier series with known
coordinate functions satisfying the boundary conditions v?"t\ 9# � s?"t\ L# � 9 and the unknown
coe.cients ai"t#\ bi"t#\ ci"t#[ For the stage of interaction\ the virtual _elds have the form]

v?"t\ x# � s
n

i�0

ai"t# sin"aix#\ "02#

s?"t\ x# � s
n

i�0

bi"t# cos"aix#\ "03#

n?"t\ x# � s
n

i�0

ci"t# sin"aix#\ "04#

where ai � p"i−9[4#:L[
By using the method proposed by Kolmogorov "0884#\ as was done in Section 0[0\ to _nd the

unknown coe.cients\ we obtain the uniform set of linear ordinary di}erential second!order
equations]

ai �
ddi

dt
\

d1di

dt1
� −

2G
r

a1
i di\ bi � −

r

ai

d1di

dt1
\ "05#

the solution result being

u"t\ x# � s
n

k�0

Ak sin"aakt# sin"akx#\ "06#

where a � z2G:r and the coe.cients Ak are found from the initial conditions

u"9\ x# � f"x#\ 9 ¾ x ¾ L "07#

as follows

Ak �"1a:Lak# g
L

9

f"x# sin"akx# dx[ "08#

As the function f"x#\ we can choose the continuous function approximating the discontinuous
initial conditions of the impact problem]

u\t"9\ 9# � 9\ u\t"9\ x# � v�\ 9 ³ x ¾ L[ "19#

The solution "06# coincides with the sum of the _rst n members of the series presenting the exact
solution for the wave equation[

Similarly\ the problem is solved for bar motion after rebound[ The virtual _elds satisfying the
boundary conditions s?"t\ 9# � s?"t\ L# � 9 were taken as follows
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v?"t\ x# � s
n

i�9

ai"t# cos"bix#\ "10#

s?"t\ x# � s
n

i�9

bi"t# sin"bix#\ "11#

n?"t\ x# � s
n

i�9

ci"t# cos"bix#\ "12#

where bi � pi:L[ As the initial conditions for the second stage\ the values of displacement\ velocity
and stress by the instant of rebound are taken[ Figure 1 shows the value stresses in the nodes
calculated by means of the series for v� � 149 m:s\ n � 19[

The solution in the form of series segments gives a more exact result than the variational!
di}erence one "particularly\ with respect to stresses#\ however it is not always possible to select
coordinate functions[

Problem solutions in Sections 0[0 and 0[1 are necessary for testing the method and they are
based on the assumption that the bar does not fracture "there is no macrofragmentation#[ Now
we turn to the prediction of microdamage and macrofragmentation according to Kolmogorov
"0884# and Part 0 of the paper[

Fig[ 1[ Solution with the Fourier series[ Stress[
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0[2[ The calculation of bar dama`e

According to Kolmogorov "0884# and Part 0 of the paper\ for the problem solutions obtained\
we have calculated damage caused by vibrations "due to fatigue# in the course of bar motion in
order to de_ne the times\ tp and coordinates x of microfractures[

Damage\ c\ is predicted for a material particle as follows[ Sections of monotonic deformation
are singled out on the motion path[ Within the section\ the strain rate jxx does not change its sign[
We indicate by t0\ t1\ [ [ [ \ tn−0*the instants of jxx sign change[ On the n!th section tn−0 ¾ t ³ tn

c"t# � s
n

i�0

ðci"tt#Łai\

dcn

dt
�

H"t#
Lp ðk0"t#\ k1"t#Ł

\ cn"tn−0# � 9[ "13#

Here H � H"t# is shear strain rate intensity\ k0 � s:T\ k1 � 1"s11−s22#:"s00−s22#−0\ s is mean
normal stress\ T is tangential stresses intensity\ s00 − s11 − s22 are principal normal stresses\
Lp � Lp"k0\ k1# is plasticity\ ai � ai"k¹0\ k¹1# are the values of the function a � a"k0\ k1# in the i!th
region of monotonic deformation[ By the instant of fracture "t � tp# c"t# � c"tp# � 0[

The functions Lp and a are taken from Bogatov et al[ "0873#]

Lp � x exp"ls:T#\ a � a9 exp"0¦9[127s:T# "14#

with the following material constants] x � 9[1\ l � −1\ a9 � 0[1[ For simplicity\ damage is cal!
culated for the _nite number of points yi � iL:9[90\ i � 0\ [ [ [ \ 099[ The simpli_cation error does
not exceed the solution error[ In the models under study\ the value of damage reaches one in
several points at a time\ to be more exact\ on some segments where macrofracture will occur[
Figure 2 shows damage distribution in the bar at the instant when the _rst macrorupture occurs
tp � 9[999932 s at the impact velocity of 149 m:s[ It should be noted that\ in all the model
experiments\ the distribution of damage\ c\ along the bar was seen to be an oscillating function[

Fig[ 2[ Damage throughout the length of elastic bar[
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Fig[ 3[ The instant of the _rst fracture[

Figures 3 and 4 show the time of fracture\ tp\ and the rupture point coordinates xp as dependent
on impact velocity\ n�[ Similarly\ the subsequent times and points of rupture can be predicted[
Figure 5 shows the motion of bar fragments after the _rst rupture[

Post!impact solid fragmentation caused by material fatigue in vibration is known from exper!
iments[ For example\ this mechanism may be responsible for the failure of Rupert|s glass drops
"see Johnson and Chandrasekar\ 0881#[

Fig[ 4[ The point of the _rst fracture[
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Fig[ 5[ Fracture point displacement[

The authors are aware of the fact that the method proposed in Part 0 of the paper and
Kolmogorov "0884# and illustrated here should be supplemented with the description of dissipation
of mechanical energy into heat energy and the description of vibration damping due to internal
friction and external resistance[

1[ Plastic bar impact on a rigid obstacle

Consider plastic bar impact when the bar takes only residual\ namely\ large strains[ The material
is assumed to be incompressible\ the constitutive relation having the form]

T � Q 0g
t

9

H dt1
a

\ 9 ¾ a ³ 0[ "15#

Here we deal with large strains and the history of the Lagrangian coordinate system needs to be
taken into account[ For the chosen type of strain "2#\ the nonzero components of the metric tensor
are as follows

`xx �
0

`xx
�

0

"0¦"ui−ui−0#:D#1
\

`yy � `yy � `zz � `zz � 0\ x $ ð9\ LŁ[ "16#

They do not depend on x\ therefore all the Cristo}el symbols are equal to zero\ whereas the
covariant derivative used in the equilibrium equations and kinematic equations\ as in Part 0 of the
paper\ is equal to the corresponding partial derivative]
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9x � 1:1x[ "17#

In this case the functional of the virtual velocities and stresses principle can be written as follows

I � g
L

9

"TH?¦rwv?# dx[ "18#

Note that v? is a covariant velocity component\ w is a contravariant acceleration component
expressed via the metric tensor as follows

w � `xx dv
dt

� 00¦
"ui−ui−0#

D 1
1 dv
dt

[ "29#

We choose the virtual _elds in the di}erence form "2#Ð"4#[ Taking into account that

v?i−0 × v?i and H? � z2
=v?i−v?i−0 =

D
� z2

v?i−0−v?i
D

\

the functional takes the form of the function

I � s
n

i�0 g
xi

xi−0
$Tz2

=v?i−v?i−0 =
D

¦rw 0
v?i−v?i−0

D
"x−xi−0#¦v?i−01

¦0
n?i−n?i−0

D
"x−xi−0#¦n?i−01 0

s?i−s?i−0

D
−rv1% dx[ "20#

By substituting eqn "29# and the relation

T � Q 0g
t

9

z2
vi−0−vi

D
dt1

a

� Q 0
z2"ui−ui#

D 1
a

\ x $ ðxi−0\ xiŁ\ "21#

into the necessary extremum conditions "09#\ we obtain a set of equations consisting of eqn "01#
and

L"u# 11u:1t1 � K"u# "22#

to _nd the functions ui"t# and si"t#[ Here L"u#\ K"u# are nonlinear vector functions of the vector
argument^ u\ s\ D\ F are the same as Section 0[0[

Set "22# has been solved numerically "by the third!order RungeÐKutta method# with the initial
conditions and parameter values from Section 0[0\ except v� � 299 m:s\ Q � 1999 and a � 9[4[
The calculation results are shown in Fig[ 6[

Bar damage was calculated for the obtained solution[ Table 0 shows the values of c in each of
the 09 segments ðxn−0\ xnŁ\ with the impact velocity of 299 m:s\ tp � 9[999904 s[ The _rst fracture
occurs in the _rst element[
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Fig[ 6[ The strain of the plastic bar before fracture] �\ t � 9[99990^ Ž\ t � 9[99991^ ,\ t � 9[999922[

Table 0
Damage along the elastoplastic bar

Element No[ 0 1 2 3 4 5 6 7 8 09

Damage\ c 0[991 9[767 9[512 9[088 9[948 9[919 9[998 9[993 9[993 9[996

2[ Stability of the rectilinear shape of the elastic bar impacting a rigid obstacle

The method proposed in Part 0 and Komogorov "0884# o}ers approximate solution for the
problem of motion stability of systems with distributed parameters[ One example is discussed
below[

In the above\ one!dimensional solutions for the problem of thin bar impact on a rigid obstacle
was obtained[ However\ common sense and experience are suggestive of the fact that the bar may
have lateral displacements as well[ Therefore the assumption of the above!described deformation
type may prove unrealizable in practice or realizable under certain conditions[ The stability of
lateral displacements of bar points in impact is discussed here[ Particularly\ the rate of growth of
lateral displacements is estimated] if it is low under some conditions\ then the solutions given in
Sections 0 and 1 can be considered realizable in practice under these conditions[

Applying the above!mentioned variational principle\ we obtain the known equations of plane
lateralÐlongitudinal vibrations of an elastic bar "see e[g[ Berezovsky\ 0865#[ The boundary con!
ditions are as follows[ At the tangency point\ the bar end displacements and the bending moment
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are zero[ At the free end\ the lateral force\ bending moment and longitudinal force are zero[ Note
that these boundary conditions allow for the displacement of the bar as a unit "rotation about the
tangency point# and are called irregular[ In the literature\ as a rule\ cases of regular _xation are
discussed[

Since the problem under study is that of stability\ the bar de~ection from the long axis "abscissa#
and the angle of rotation "derivative of de~ection with respect to the abscissa# are considered
small[ After the linearization\ the equation of longitudinal vibrations becomes independent of the
equation of lateral vibrations and it is integrated independently[ The solution is well!known and
it is constructed in the form of a trigonometric series[ As a result\ after substituting this solution
into the equation of lateral vibrations we obtain a parabolic equation with periodic coe.cients[

The solution for this equation is pursued in the form of the series]

u"t\ j# � s
�

m�9

8m"j#wm"t#[ "23#

Here 8m"x# are eigenfunctions of the boundary value problem

d38m

dj3
¦q3

m8m � 9\ "24#

d18m

dj1 bj�9

� 9\
d28m

dj2 bj�9

� 9\ 8m"0# � 9\
d18m

dj1 bj�0

� 9 "25#

having the form

8m"j# � sh"qm"j−0##:ch"qm#¦sin"qm"j−0##:cos"qm#\ m � 0\ 1\ 2[

89"j# � j−0[ The numbers qm satisfy the transcendental equation t`"qm# � th"qm#[ This equation
has a countable number of roots\ including the double zero root corresponding to the rotation of
the bar as a solid about the point of contact with the obstacle[ One eigenfunction corresponds to
this root[ The roots asymptotically approach the numbers of the form p:3¦pn\ n : �[

Substitution and rearrangement give a countable set of ordinary di}erential equations with
periodic coe.cients with respect to the functions wm"t#]

d1wn

dt1
¦v1

nwn−3v� s
�

k�9

s
�

m�9

"−0#k sin 0
p"1k¦0#t

1 1 bnmkwm � 9\ n � 9\ 0\ 1\ [ [ [ "26#

bnmk > 8n"z# >1 � g
0

9

8n"z# $cos 0
p"1k¦0#z

1 1
d8m"z#

dz
¦

1 sin 0
p"1k¦0#z

1 1
p"1k¦0#

d18m"z#

dz1 % dz[ "27#

Here\ v� � V�:a is a relative impact velocity to be considered a minor parameter[
Let us estimate the parameters of the set "26#Ð"27# for two cases "see e[g[ Bogolubov and

Mitropolsky\ 0869^ Mitropolsky\ 0856^ Berezovsky\ 0865#[
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0[ Simple resonance[ Assume\ at some i and j\ the relation

vj � p"1i¦0#:1¦mq^ m1 � 3v�\ "28#

is ful_lled\ i[e[\ one of the frequencies of the longitudinal vibration is close to the frequency of the
longitudinal vibrations[ Hence the relation between the resonance frequencies and the relative bar
rigidity\ w\ can be found]

z �
1q1

i

p"1i¦0#
1

¦mq

� LX
S
J

[ "39#

The parameter q de_nes the di}erence between these frequencies[ It is supposed to be proportional
to the minor parameter[ It is also supposed that this relation is not ful_lled at any other i and j[

Figure 7 shows the boundary of the stability region as dependent on the parameter m at i � 9\
j � 2[ The lateral vibration frequency dependent on the relative rigidity w is plotted on the horizontal
axis\ the parameter m proportional to the square root of impact velocity is plotted on the vertical
axis[ The resonance frequency is marked by a thin vertical line[ The regions where the real parts
of the roots of the characteristic equation are positive are denoted by {{n||\ whereas the regions
with the zero parts are denoted by {{s||[ Note that\ because of calculation errors\ the real parts of
the eigenvalues may be positive\ though very small "about the values of calculation errors#[

1[ Combinative resonance[ Assume\ at some i\ j and m\ the relation

vi¦vj¦o"q0¦q1# � p"1m¦0#:1 "30#

Fig[ 7[ Domains of stability for elastic bar rectilinearity[
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is ful_lled[ Also assumed that\ for the rest of the frequency pairs\ these relations are not ful_lled
at any i\ j\ m\ and at any i and m we have wi � p"1m¦0#:1[

Thus\ the solutions given in Sections 0 and 1 are realizable in practice\ as they are stable with
respect to lateral vibrations at certain values of the parameters[

3[ Conclusion

The examples discussed in the paper have shown good results in applying the method for solving
boundary value problems of deformed solid mechanics described in Part 0 and Komogorov "0884#[
The method can be applied to the prediction of the strainÐstress state and body fragmentation
under macrofracture as well as to the study of motion stability described in Part 0 and Kolmogorov
"0884#[ The solutions obtained by the method coincide with the well!known solutions and explain
some experimental phenomena[ The method can be recommended for practical application[
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